OXFORD CAMBRIDGE AND RSA EXAMINATIONS

LEVEL 2 FUNCTIONAL SKILLS MATHEMATICS

TASK AND ANSWER BOOKLET PRACTICE PAPER 1

TIME: 1 HOUR 30 MINUTES

INSTRUCTIONS

Fill in all the boxes below. Make sure your personal details are entered correctly. Use BLOCK LETTERS.

Your surname or family name

Your first forename (if any)

Your second forename (if any)

Date of birth

Centre name

Centre number

Your OCR candidate number

At the beginning of this booklet you will find tear off Resource Documents. You will need to refer to these documents to complete the tasks.

You will also need:

- a pen with black ink
- a calculator
- a ruler

YOU HAVE 1 HOUR AND 30 MINUTES TO COMPLETE THE THREE TASKS

For each task, make sure that you:

- read the questions carefully before starting
- write your answers in this booklet
- clearly show how your working leads to your answers

FOR EXAMINER USE ONLY		
Question No	Mark	Total
TASK A		
1	/6	
2	/8	
3	/6	/20
TASK B		
1	/2	
2	16	
3	/5	
4	/7	/20
TASK C		
1	/5	
2	/8	
3	17	/20
Total	/60	

2 marks are available in each task when you show you have checked your work.

When you have finished, hand this booklet and all the Resource Documents to the supervisor.
Ofqual Qualification Reference Number: 500/8910/9

This document consists of 28 pages. Any blank pages are indicated.

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK

RESOURCE DOCUMENTS

The Resource Documents on pages 5, 7, 9 and 11 contain information to help you to answer the tasks in this booklet.

- The resource documents are perforated along the left hand side, so they can be removed from the task and answer booklet.
- Your supervisor will instruct you when to remove the resource documents, before you start the assessment.
- Please fold pages 5, 7, 9 and 11 along the perforated strip before removing from the task and answer booklet.

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

TASK A - DIY SLIME

RESOURCE DOCUMENT 1

How to make your own Slime

Materials:

- Cornflour
- Water
- Food colouring
- Large bowl and spoon

What to do
Put the cornflour into the large bowl.
Mix in water to the cornflour.
The ratio of cornflour to water by volume should be $2: 1$ so to make 3 cups of Slime you need to mix 2 cups of cornflour with 1 cup of water.

If you want coloured Slime add some food colouring to your water. Use 5 drops of food colouring per litre of Slime.

Remember
a litre is 1000 ml
a drop is about 0.05 ml
1 ml of cornflour weighs 0.5 g
1 g of cornflour has a volume of 2 ml

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

TASK A - DIY SLIME

RESOURCE DOCUMENT 2

Food colouring
All colours are the same price

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

TASK B - CANDLES

RESOURCE DOCUMENT 1

Approximate volumes (V) of some solids

Cube

$V=s^{3}$

- Side s -

Cylinder

$V=0.8 d^{f} h$

Cuboid

$V=l w h$

Cone
$V=0.3 d^{2} h$

TASK C - CHIPS

RESOURCE DOCUMENT 1

Nutritional Profile: Chips, as sold in fish and chip shops, average values, per $\mathbf{1 0 0} \mathbf{g}$
Calories (kcal):
239.0

Protein (g):3.2

Carbohydrate (g): 30.5
Total fat (g):
12.4

Saturated fat $(\mathrm{g}): \quad 1.1$
Fibre $(\mathrm{g}): \quad 2.2$
Ideally food should be low in saturated fat, calories and carbohydrate but high in protein and fibre.

According to NHS Choices

- The average man should eat no more than 30 g of saturated fat a day.
- The average woman should eat no more than 20 g of saturated fat a day.

An adult needs about 50 g of protein a day

TASK AND ANSWER PAGES

Do not turn over this page until you are told to do so by your supervisor.

TASK A - DIY SLIME

You will need Task A Resource Documents 1 and 2.

Roger works at a pre-school unit.
One of Roger's jobs is to order Slime.
Slime is a soft sticky substance that children play with.

On average the unit has 20 children each day.
The unit is open 5 days a week for 50 weeks a year.
Each child playing with Slime needs about 1 litre of Slime.
About a quarter of the children play with Slime at any one time.

Q1 (a) How much Slime is needed at any one time?
\qquad
\qquad
\qquad
\qquad
A 500 ml tub of Slime costs £2.60.
It is thrown away after two months.
(b) How much does the unit spend on Slime in a year?

Show all your working and any assumptions you make.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square (4 marks)

Examiner use only

Roger decides to make his own Slime.
He finds a recipe for Slime on the internet.
Q2 (a) How much will the food colouring cost for one litre of Slime?
Show your working and any assumptions you make.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(4 marks)
(b) How much will the cornflour cost to make one litre of Slime?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3 In one year, can Roger save money by making the Slime himself? Show your calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Checking (2 marks)
Examiner use only (Checking)

Total marks
Examiner use only (Total)
\square

TASK B - CANDLES

You will need Task B Resource Document 1.

Amy makes candles to sell at craft fairs.

First she melts slabs of wax.

She pours the wax into candle moulds which have wicks in.

When the wax has cooled down the candles are ready.

The wax slabs are cuboids measuring 22 cm by 15 cm by 6 cm .
Q1 What is the volume of one wax slab?
\qquad
\qquad
\qquad
\qquad

Amy has some new cylindrical candle moulds.
Their sizes are given in inches.
The candles made in these moulds have a diameter of 3 inches and a height of $5 \frac{1}{2}$ inches. Amy knows that one inch is approximately 2.5 centimetres.

Q2 How many of the cylindrical candles can Amy make from one slab of wax? Show all the stages in your calculations.
\qquad
(6 marks)

Examiner

use only (Q2)

Most customers want to know how long their candles will burn for.
Amy always burns a new type of candle to find this out.
These pictures show the height of one of Amy's candles at two different times on one day.

Q3 The original unused candle was 30 cm tall.
How long would it take for one of these unused candles to burn completely? Explain your answer clearly.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(5 marks)

Amy thinks candles give out less CO_{2} than light bulbs.
This would mean that candles are better for the environment.
She does some research.

An average electric light bulb produces 45 g of CO_{2} an hour.
It gives out 600 lumens of light.
Lumens are a measure of the amount of light given out.
A typical candle lasts 4 hours and produces a total of only 44 g of CO_{2}. It gives out about 15 lumens of light.

Q4 Calculate the amount of CO_{2} produced by candles giving the same amount of light as an electric light bulb. Is Amy right?
\qquad
(5 marks) Examiner use only (Q4)
\square

TASK C - CHIPS

You will need Task C Resource Document 1.

Jan eats chips from the local fish and chip shop at least twice a week.
His partner Pat thinks this is unhealthy. He finds some information in a book.

Q1 A single portion of chips from their local fish and chip shop weighs about 300 g .
(a) How much saturated fat is there in a single portion?
\qquad
\qquad
\qquad
\qquad
(b) Jan says that eating a 300 g portion of chips gives him almost 20% of the daily protein he needs.
Is he correct? Support your answer with working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(3 marks) Examiner use only

Jan wants to cut down on the amount of saturated fat he eats, but still wants to eat chips.
Pat says that on average:

- oven chips and microwave chips have less saturated fat in them than fish and chip shop chips.
and that
- oven chips have less saturated fat than microwave chips.

They note down the amount of saturated fat in 100 g of some makes of oven chips and microwave chips.
Here are their results.

Oven chips

3.6
0.2
0.7
1.3
3.1
1.7
1.8
0.4

Microwave chips

$1.6 \quad 0.9$
2.8
1.4
0.8
2.1

Q2 Are Pat's statements correct?
Support your decisions with clear working.
\qquad
(8 marks) Examiner use only

Jan reads this on the Fish Fryers website:

Fact

The greater the surface area of a chip the more saturated fat it contains after frying.
When Jan reads this fact he thinks that French fries must have more saturated fat in them than chunky chips.

He assumes that both chip shapes are cuboids.
He sketches the two chip shapes and their dimensions.
Both chips have the same weight and volume.

Q3 Compare the surface area of the two different chip shapes.
Is Jan right that French fries have more saturated fat in them than chunky chips?
Support your answer with some figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Total marks Examiner use only (Total)

END OF TASK C

Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright
acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity
For queries or futher information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge
CB2 8EA.
OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate
(UCLES), which is itself a department of the University of Cambridge.

Oxford Cambridge and RSA

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 LEVEL 1 FUNCTIONAL SKILLS MATHEMATICS PRACTICE PAPER 2
 Mark Scheme

The maximum mark is 60

OCR Level 2 Functional Skills Maths Referencing for Coverage and Range

Our ref	Coverage and Range
N1	understand and use positive and negative numbers of any size in practical contexts
N2	carry out calculations with numbers of any size in practical contexts, to a given number of decimal places
N3	understand, use and calculate ratio and proportion, including problems involving scale
N4	understand and use equivalences between fractions, decimals and percentages
A1	understand and use simple formulae and equations involving one- or two-step operations
G1	recognise and use 2D representations of 3D objects
G2	find area, perimeter and volume of common shapes
G3	use, convert and calculate using metric and, where appropriate, imperial measures
S1	collect and represent discrete and continuous data, using information and communication technology (ICT) where appropriate
S2	use and interpret statistical measures, tables and diagrams, for discrete and continuous data, using information and communication technology (ICT) where appropriate
S3	use statistical methods to investigate situations
S4	use probability to assess the likelihood of an outcome

Representing	Our Ref
Understand routine and non-routine problems in familiar and unfamiliar contexts and situations.	R1
Identify the situation or problems and identify the mathematical methods needed to solve them.	R2
Choose from a range of mathematics to find solutions.	R3
Analysing	A1
Apply a range of mathematics to find solutions.	A1
Use appropriate checking procedures and evaluate their effectiveness at each stage.	A2
Interpreting	In
Interpret and communicate solutions to multistage practical problems in familiar and unfamiliar contexts and situations.	I1
Draw conclusions and provide mathematical justifications	I2

[^0]
FS Maths Marking Guidance

TASK A - DIY slime

Part	Process	Award		On evidence of....	Exemplification Notes	R	A	I	Coverage/range
Q1(a)*	Calculating slime needed at any one time [A]	2	2	5 (litres/l) \qquad or \qquad $20 \div 4$ seen or figs 5		$\begin{aligned} & \hline \text { R1 } \\ & \text { R2 } \end{aligned}$			N1
Q1(b)*	Calculating total annual spend on slime [B]	4	4 3 3 3 3 3 3	(£)156 to (£)182 as answer with working \qquad or \qquad 156 to 182 with no working \qquad Or \qquad (Years \div weeks lifetime approach) 1 for each correct [operation] seen or implied, up to a maximum of 3 [$50 \div 8$ or (6 to 7)] [$\times 5$ or (30 to 35)] [×2] $\text { [} \times 2.60 \text { or } 260]$ or \qquad $\overline{\text { (Days open } \div \text { days lifetime (40)) }}$ 1 for each correct [operation] seen or implied, up to a maximum of 3 [50×5 or (250)] (days open) [$\div 40$ or (6 to 7)] [$\times 2$] [$\times 2.60$ or 260] \qquad or \qquad More direct approach of stating that 6 changes a year are needed up to a maximum of 3 x6 or 6 x [$\times 2$] ["5"] [$\times 2.60$ or 260]		R3	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	I1	$\begin{aligned} & \text { N2 } \\ & \text { G3 } \end{aligned}$

Part	Process	Award		On evidence of....	Exemplification Notes	R	A	I	Coverage/range
Q2(a)*	Calculating cost to colour a litre of slime with food colouring	4	4 3	1p or £0.01 or \qquad Figs 1 as answer \qquad or \qquad 1 for each correation within a calculat [seen] or implied $[5 \times 0.05] \text { or }[0.05 \times 5] \text { or }[0.25]$ $[\div 25]$ [x 100] or [x1] (if clear intent to do this)		$\begin{aligned} & \hline \text { R3 } \\ & \text { R2 } \end{aligned}$	A1	11	$\begin{aligned} & \hline \text { G3 } \\ & \text { N3 } \\ & \text { N2 } \end{aligned}$
Q2(b)	Calculating cost of corn flour to make a litre of slime.	4	4	$\begin{aligned} & \hline(0.99 \text { to } 1.01) \text { or } \text { (99 to } 101) \\ & \hline 1 \text { for each correct [operation] seen } \\ & \text { or implied within a calculation, up to } \\ & \text { a maximum of } 3 \\ & {\left[\frac{2}{3} \times 1000 \text { or } \frac{2}{3} \times \text { or } 667 / 666 \times\right]} \\ & {[\times 0.5 \text { or } \div 2]} \\ & {[\times 1.5]} \\ & {[\div 500]} \end{aligned}$	Last 2 may be evidenced by 0.3 and 0.003 seen at appropriate point in the calculation	R3	A1	$\begin{array}{\|l\|} \hline \text { I1 } \\ \text { I1 } \end{array}$	$\begin{aligned} & \text { S1 } \\ & \text { G3 } \\ & \text { N3 } \end{aligned}$
Q3	Calculating annual saving	4	3 1 1	(£)125.70 or (£)125.76 \qquad or \qquad "Annual spend on Slime" seen (156-182) "Food colouring cost" + "Cornflour cost" (100 to 102 or $£$ eq.) [×"30" to "35"] \qquad and \qquad Correct comment about loss or saving based on candidates' figures as shown in this part question	Accept rounding to nearest £1 Correct total cost of making a litre of slime is $£ 1.00$ to $£ 1.01$ to gain full credit must be evidence of adding on the " 1 p " for the colouring or a clear statement to ignore it.	R2	A1	$\begin{array}{\|l\|} \hline 11 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { N2 } \\ \mathbf{N} 1 \end{array}$

Part	Process	Award		On evidence of.... ${ }^{\text {Exemplification Notes }}$	R	A		Coverage/range
	Checking	2	2: Clear evidence of a checking procedure being carried out at any appropriate point in the task that isn't simply a reverse calculation or. Clear recognition and relevant statement at any appropriate point that a particular answer to a calculation is appropriate/expected or inappropriate/not expected 1: checking by reverse calculation or at least 3 correct and appropriate calculations seen or implied. 0: No evidence of checking or consideration of reasonableness of answers - including bland statements to the effect that calculations were checked without any relevant evidence			A2		N1
	TOTAL	20	3*		7	7	6	

* fixed response marks

Process	R	A	I	Coverage	N1	N2	N3	N4	A1	G1	G2	G3	S1	S2	S3	S4
Q1a	2				2											
Q1b	1	2	1			3						1				
Q2a	2	1	1		2	1						1				
Q2b	1	1	2				2					1	1			
Q3	1	3	2		3	3										
Total	8	7	6		7	7	2					3	1			

FS Maths Marking Guidance
TASK B - Candles

Part	Process	Award		On evidence of	Exemplification Notes	R	A	1	Coverage/range
Q1*	Calculating the volume of a wax slab. [A]	2	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$1980\left(\mathrm{~cm}^{3}\right)$ \qquad or \qquad $22 \times 15 \times 6 \text { seen }$		$\begin{array}{\|l\|} \hline \text { R1 } \\ \text { R1 } \\ \hline \end{array}$			G2
				Some candidates may change to Imperial for the comparison					
Q2*	Changing dimensions of mould into centimetres [B]	2	2 1	Either conversion correct i.e. 7.7 or 13.75 seen \qquad or \qquad $3 \div 0.4$ or $5.5 \div 0.4$ seen	Some candidates may change to Imperial for the comparison $1980\left(\mathrm{~cm}^{3}\right)=126.72\left(\right.$ inches $\left.{ }^{3}\right)$	$\begin{array}{\|l} \hline \text { R2 } \\ \text { R2 } \end{array}$	$\begin{aligned} & \hline \mathbf{A} 1 \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	11	$\begin{aligned} & \text { N3 } \\ & \text { G3 } \\ & \text { G2 } \\ & \text { N2 } \end{aligned}$
	Calculating volume of the new candle [C]	2	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	or \qquad At least two of [these] seen $[0.8]\left[\times\right.$ " $\left.7.5^{2}\right][\times 13.75]$					
	Calculating number of candles which can be made from a single slab [D]	2	2 1 2 1	3 (candles) \qquad or \qquad 3.2 or 4 (rounded up from 3.2) \qquad or \qquad "1980" \div "618.75" rounded down or \qquad "1980" \div " 618.75 " given as a decimal answer or rounded up					
				There may be alternative methods seen such as "informal" direct proportion					
Q3**	Finding length of candle burnt [E]	2	$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$	\qquad or \qquad 16.5 ± 0.1 or 10.5 ± 0.1 seen \qquad or \qquad 12.2 ± 0.1 and 18.1 ± 1 seen		$\begin{aligned} & \text { R2 } \\ & \text { R3 } \end{aligned}$		11 11 I1	$\begin{aligned} & \text { G3 } \\ & \text { N3 } \end{aligned}$

Part	Process	Award		On evidence of	Exemplification Notes	R	A	I	Coverage/range
	Length of time candle burnt for [F]	1	1	4 (hours) seen in working					
	Calculating burn rate [G]	1	1	"6 (cm)" \div " 4 " seen ($1.5(\mathrm{hr})$)					
	Using burn rate to calculate burn time for candle [H]	1	1	$30 \div$ "burn rate" (20 (hours))					
Q4*	Calculating number of candles to give 600 lumens [I]	2	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	40 (candles) \qquad or \qquad Division by 15 seen in working.		R3	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \\ & \text { A2 } \\ & \text { A2 } \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ \text { I1 } \end{array}$	
	Hourly rate of CO_{2} production by a candle [J]	1	1	$44 \div 4$ (=11) or equivalent $\overline{44 \times 40(=1760)}$ or \qquad					
	Calculating the CO_{2} footprint of the above number of candles [K]	1	1	$\begin{aligned} & \text { "number of candles" } \times \text { " } 11 \text { " } \\ & \left(440\left(\mathrm{~g} \text { of } \mathrm{CO}_{2}\right)\right. \\ & \frac{45 \times 4(=180)}{} \text { or } \end{aligned}$	Common error here will probably be to omit to divide by 4 hours and so working through with 44 of CO_{2}				
	Finding if Amy is right by comparing CO_{2} figures. [L]	1	1	Consistent observation from candidates' results					

Part	Process	Award	On evidence of	Exemplification Notes	R	A	I
[CH]	Checking	$\mathbf{2 :}$	Clear evidence of a checking procedure being carried out at any appropriate point in the task that isn't simply a reverse calculation or. Clear recognition and relevant statement at any appropriate point that a particular answer to a calculation is appropriate/expected or inappropriate/not expected				

* fixed response marks

Process	R	A	I	Coverage	N1	N2	N3	N4	A1	G1	G2	G3	S1	S2	S3	S4
1	2										2					
2	2	3	1		1		2				2	1				
3	2		3				3					2				
4	1	4	2		3	2	2									
Total	7	7	6		4	2	7				4	3				

FS Maths Marking Guidance

TASK C - Chips

Part	Process	Award On evidence of			Exemplification Notes		R	A	I	Coverage/range
Q1(a)	Calculating the weight of saturated fat in 300 g portion of chips [A]	2	2	3.3 (g) \qquad or \qquad 1.1 or $\times 3$ seen in working			$\begin{aligned} & \text { R1 } \\ & \text { R2 } \end{aligned}$			$\begin{aligned} & \hline \text { N1 } \\ & \text { S1 } \end{aligned}$
Q1(b)	Calculating protein in a portion of chip shop chips [B]	1	1	9.6 (g) (may be embedded)			R2	A1	11	$\begin{aligned} & \mathrm{N} 4 \\ & \mathrm{~N} 1 \\ & \mathrm{~S} 1 \end{aligned}$
	Finding 20% of 50 g \qquad or \qquad Finding 9.6 as a \% of 50 [C]	1	1	$10(\mathrm{~g})$ \qquad or \qquad $\frac{9.6}{50} \text { or } 19.2(\%)$	$\frac{9.6}{50}$ alone g condone 19	the mark,				
	Reflecting on Pat's statement (chips provide 20% of daily protein) [D]	1	1	Correct comparison of two above figures calculated by the candidate.	Observation mention of " providing th working. Allow "not q comment.	hout specific mbers" is sufficient are visible in the " or similar				
Q2	Calculating appropriate summary measure (mean / median) [E]	3	2 1 1 1 1 1	First correct mean / median Second correct mean / median \qquad or \qquad 12.8 or 9.6 seen in working $[\div 8]$ and $[\div 6]$ seen in working \qquad or \qquad Attempt to order one of the lists	Oven= Microwave=	$\begin{aligned} & \hline 1.6 / 1.5 \\ & 1.6 / 1.5 \end{aligned}$	$\begin{aligned} & \hline \text { R2 } \\ & \text { R2 } \end{aligned}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	11 11 11	$\begin{aligned} & \text { S2 } \\ & \text { S3 } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Part \& Process \& \multicolumn{3}{|r|}{Award On evidence of} \& Exemplification Notes \& R \& A \& I \& Coverage/range \\
\hline \& \begin{tabular}{l}
Stating which average is being used \\
[F]
\end{tabular} \& 1 \& 1 \& Specific statement somewhere in the work that mean or median is being used \& Just "average" is not sufficient to gain this mark. \& \& \& \& \\
\hline \& Comparing like with like [G] \& 1 \& 1 \& Some indication that all three figures (regardless of correctness) are for 100 g or 300 g of chips \& Need not be explicitly stated. (but depending on circumstances may be evidenced by " \(\times 3\) " or " \(\div 3\) " at the appropriate point. \& \& \& \& \\
\hline \& Comparing oven "mean"/"median" of saturated fat for oven and microwave chips [H] \& 1 \& 1 \& Comparison consistent with candidates own figures. \& \& \& \& \& \\
\hline \& Comparing oven "mean"/"median" of saturated fat of oven and microwave chips with chip shop chips [I] \& 2 \& \& Oven v fish and chip shop chips Microwave v fish and chip shop chips \& \begin{tabular}{l}
Consistent with candidates' figures. \\
The two statements may be embedded in a single overall statement - allow this.
\end{tabular} \& \& \& \& \\
\hline Q3 \& Calculating the surface areas of French stick chips and Chunky chips \& 4 \& 3
1
1

1 \& | First correct surface area Second correct surface area \qquad or \qquad 0.7×0.7 or 0.49 or 0.7×12 or 8.4 (i.e. area of one "French" face) |
| :--- |
| 1.4×1.4 or 1.96 or 1.4×3 or 4.2 (i.e. area of one "Chunky" face) |
| Evidence of "adding" the areas of six faces for at least one chip | \& 34(.58) for sticks 20.72) for chunky \& \[

$$
\begin{array}{|l}
\hline \mathbf{R 2} \\
\mathbf{R 1}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline \text { A1 } \\
& \text { A2 } \\
& \text { A2 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 11 \\
& \mathbf{1 1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N1 } \\
& \text { G2 }
\end{aligned}
$$
\]

\hline \& Comparing areas of two types of chips in line with "bigger area = more fat" [K] \& 1 \& 1 \& Statement consistent with candidates own results. \& \& \& \& \&

\hline
\end{tabular}

Part	Process			Award On evidence of	Exemplification Notes	R	A		Coverage/range
	Checking [CH]	2	2: Clear evidence of a checking procedure being carried out at any appropriate point in the task that isn't simply a reverse calculation or. Clear recognition and relevant statement at any appropriate point that a particular answer to a calculation is appropriate/expected or inappropriate/not expected 1: checking by reverse calculation or at least 3 correct and appropriate calculations seen or implied. 0: No evidence of checking or consideration of reasonableness of answers - including bland statements to the effect that calculations were checked without any relevant evidence						
	TOTAL	20	3*			7	7	6	

* fixed response marks

Process	R	A	I	Coverage	N1	N2	N3	N4	A1	G1	G2	G3	S1	S2	S3	S4
1a	2				1								1			
1b	1	1	1		1			1					1			
Q2	2	3	3			1								5	2	
Q3	2	3	2		1	1					5					
Total	7	7	6		3	2		1			5		2	5	2	

[^0]: N - Number
 A - Algebra
 G - Geometry
 S - Statistics

